Quantum key distribution and quantum error correction with continuous variables

by Aurélie Denys

under the supervision of Anthony Leverrier

05/04/2024

Ínría

Quantum Information

1st and 2nd quantum revolutions

- 1st revolution: lasers, transistors
- 2nd revolution: control of individual particles

Quantum Communication

- Communication whose security is guaranteed by quantum physics
- Quantum key distribution for setting with 2 protagonists

Quantum Computing

- Perform computations by processing quantum information
- Deal with errors \Rightarrow quantum error correction

Quantum Information

1st and 2nd quantum revolutions

- 1st revolution: lasers, transistors
- 2nd revolution: control of individual particles

Quantum Communication

- Communication whose security is guaranteed by quantum physics
- Quantum key distribution for the setting with 2 protagonists

Quantum Computing

- Perform computations by processing quantum information
- Deal with errors \Rightarrow quantum error correction

The key distribution problem

Introduction

A secret shared key can be used to securely encrypt communications... but how to agree on a key?

Ínnín

Quantum key distribution (QKD)

Idea: Key exchange protocol with security guaranteed by quantum physics¹

Ínsia

¹Bennett & Brassard 1984, Ekert 1991

QKD Protocol

Quantum transmission phase

- Alice: random variable α_k
- She sends a quantum state $|\phi(\alpha_k)\rangle$ to Bob
- ▶ Bob's measure $\rightarrow \beta_k$

Classical post-processing

• Obtain a shared secret key from the correlated strings $(\alpha_1, \alpha_2, \alpha_3, ...)$ and $(\beta_1, \beta_2, \beta_3, ...)$

Security proofs

- Bound Eve's information using level of correlation of strings
- Compute length of secret key that can be distilled

QKD with discrete or continuous variables

Discrete-variable QKD²

- $\triangleright \ \alpha_k, \ \beta_k \in \{\mathbf{0}, \ldots, \mathbf{d}\}$
- Easy proofs³
 States in H = Span({|0>, |1>})
- Requires expensive single-photon detectors

Continuous-variable (CV) QKD⁴

- $\blacktriangleright \ \alpha_k, \ \beta_k \in \mathbb{C}$
- Harder proofs *H* = Span({ |n⟩, n ∈ ℕ})
- Uses standard telecom equipment
 Reduced gap between theory and experiments

Our goal: Security of realistic CV QKD protocols

³Shor & Preskill 2000

⁴Grosshans & Grangier 2002

Ínnín

²Bennett & Brassard 1984, Ekert 1991

Quantum Information

1st and 2nd quantum revolutions

- ▶ 1st revolution: lasers, transistors
- 2nd revolution: control of individual particles

Quantum Communication

- Communication whose security is guaranteed by quantum physics
- Quantum key distribution for the setting with 2 protagonists

Quantum Computing

- Perform computations by processing quantum information
- Deal with errors \Rightarrow quantum error correction

Quantum error correction

Why error correction?

Gate fidelity of 99.9% $\Rightarrow \sim$ 1000 gates possible \neq 10^{12} gates needed 5

- Key idea: introduce redundancy
- Encode information into higher-dimensional space
 Quantum error correcting codes⁶
- Corrected memory not enough, also want gates
 ⇒ Fault-tolerant quantum computing⁷

⁵Beverland et al. 2022
 ⁶Shor 1995
 ⁷Aharonov & Ben-Or 1996

Discrete and continuous classical error correction (EC)

Discrete EC

- Encode logical bit into physical bits
- Example: repetition code
 - $0_L = 000, \quad 1_L = 111$
- ► Information recovered by majority vote → corrects a single bit flip

Continuous EC

Encode strings of bits into continuous variables, e.g. phase and amplitude of electric signal

Discrete and continuous quantum error correction (QEC)

Discrete QEC

Logical qubit encoded into physical qubits⁸, e.g.,

 $\ket{0}_L = \ket{0}\ket{0}\ket{0} \quad \ket{1}_L = \ket{1}\ket{1}\ket{1}$

Continuous QEC

Ínría_

⁸Shor 1995, Steane 1996, Calderbank & Shor 1996
 ⁹Cochrane et al. 1999, Gottesman & Kitaev & Preskill 2001

Multi-mode encodings

Concatenation of discrete and continuous encodings

Better performances expected from multi-mode codes

Our goal: Initiate study of two-mode codes

Outline

1. Continuous-variable quantum key distribution

 Explicit analytical bound on Eve's information, in CV QKD protocols, using arbitrary state modulation¹⁰

2. Multimode bosonic codes

- Construction of a new two-mode bosonic code: the 2*T*-qutrit¹¹
- Construction of two-mode bosonic codes with easily implementable gates¹²

¹⁰Aurélie Denys, Peter Brown, Anthony Leverrier, *Quantum* 5, 540 (2021)

Innía

¹¹Aurélie Denys, Anthony Leverrier, *Quantum* 7, 1032 (2023)

¹²Aurélie Denys, Anthony Leverrier, arXiv:2306.11621 (2023)

Continuous-variable quantum key distribution

Ínría_

14 / 35

Continuous-variable QKD Protocol

States sent by Alice

- Idealisation of laser light
- Coherent state $|\alpha\rangle = e^{\frac{-|\alpha|^2}{2}} \sum_{n \in \mathbb{N}} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$, $\alpha \in \mathbb{C}$
- \blacktriangleright Set of coherent states \rightarrow constellation of points in the complex plane

Measurement performed by Bob

• Double-homodyne measurement, $P(\beta|\alpha) = \frac{1}{\pi}e^{-|\alpha-\beta|^2}$

Discretely-modulated CV QKD

- ▶ Optimal case: Gaussian modulation¹³ $\alpha \sim \mathcal{N}(0, V_A)$
- Well-understood security¹⁴
- ▶ But unrealistic ⇒ Look at discrete constellations
 - analytical bounds for 2-3 states 15 , numerical bounds for 4 states 16
 - bigger discrete constellations?

¹³Grosshans & Grangier 2002
 ¹⁴García-Patrón & Cerf 2006, Navascues et. al. 2006, Leverrier 2017
 ¹⁵Zhao et al. 2009, Brádler & Weedbrock 2018
 ¹⁶Ghorai et al. 2019, Lin et. al. 2019, Upadhyaya et. al. 2021

Bounding Eve's information

Goal: Bound Eve's information on key, from observed correlations

- Equivalent entanglement-based protocol \rightarrow shared state $\rho_{AB}^{\otimes n}$
- Restriction to collective attacks, asymptotic regime
- García-Patrón & Cerf 2006, Navascues et al. 2006: Eve's information bounded by

where \hat{a} and \hat{b} are Alice's and Bob's annihilation operators

 \Rightarrow Bound $Z = \operatorname{tr}(\rho_{AB}C)$, where $C = \hat{a}^{\dagger}\hat{b}^{\dagger} + \hat{a}\hat{b}$

SKR semi-definite program

Ghorai et al. 2019: semi-definite program (SDP) whose solution is a lower bound on Tr(ρ_{AB}C)

CV QKD 00000000

Numerical method explodes when number of states in constellation grows analytical bound?

Main result

Sum-of-squares technique: exhibit K s.t. KK[†] = C − E and Tr(ρE) is easily bounded

CV QKD 000000000

$$KK^{\dagger} \succeq 0 \Rightarrow \operatorname{tr}(\rho C) \ge \operatorname{tr}(\rho E)$$

Difficult technical part: find K leading to tight bound

$$\mathcal{K}=z(\mathcal{A}-x\mathcal{P}^{\dagger})+rac{1}{z}\mathcal{B}^{\dagger} \hspace{0.5cm} ext{with} \hspace{0.1cm} x,z\in \mathbb{C} \hspace{0.1cm} ext{and operator} \hspace{0.1cm} \mathcal{P} \hspace{0.1cm} ext{optimised}$$

Explicit analytical bound

Recover known values for 4-PSK and Gaussian modulation

Can study big discrete constellations

Introduction 00000000000	CV QKD 000000●0	Multimode bosonic codes

Quadrature amplitude modulations

64-QAM already gives performances close to that of Gaussian modulation

Parameters: distance = 50 km, excess noise ξ = 0.02, binomial distribution

Ínnía

Conclusion

Main result

Analytical bound on the secret key rate for CV QKD protocols with an arbitrary constellation of states

 \Rightarrow 64 coherent states enough to get good performances

Follow-up works

- Experimental realisations¹⁷
- Optimisation of constellations¹⁸

Open question

Composable security against general attacks, in finite-size regime

Ínnín

 $^{^{17}}$ Roumestan et al. 2022, Pan et al. 2022, Tian et al. 2023 18 Almeida et al. 2021

Multimode bosonic codes

22 / 35

Bosonic quantum error correction

Multimode codes

Example: multi-mode GKP

¹⁹Cohrane et al. 1999, Leghtas et al. 2013, Ofek et al. 2016
 ²⁰Gottesman & Kitaev & Preskill 2021, Sivak et al. 2022

Noise in bosonic systems

Figure of merit: the entanglement fidelity

 Quantifies how close a state is from the original state after performing a recovery operation

Find good code = find \mathcal{E} such that fidelity is large (for optimal \mathcal{R})

Defining a code

Two steps

- Choice of constellation of 2-mode coherent states
- Choice of subspace of small dimension within constellation span

Constellation

- $\begin{array}{ll} \blacktriangleright \mbox{ GKP codes} \rightarrow \mbox{ additive group} \\ \mbox{ Cat codes} \rightarrow \mbox{ multiplicative group} \end{array}$
- Look at subgroups of units of quaternions
- Our choice: 24 coherent states $|\alpha_{\ell}\rangle |\beta_{\ell}\rangle$ s.t. $\alpha_{\ell} + j\beta_{\ell} \in 2T$
- Corresponds to vertices of the 24-cell

Ínnín

²¹Robert Webb's Stella software, CC-BY-SA-3.0

Finding a good subspace (1/2)

First idea: maximise entanglement fidelity for loss to find qubit within 24-dimensional space $% \left({{\left[{{{\rm{T}}_{\rm{T}}} \right]}} \right)$

Iterative optimisation method²² (via SDPs)

- \blacktriangleright Work in the basis given by the 24 coherent states \Rightarrow avoid need for truncations
- Did not work well to find an explicit code in practice

²²Reimpell & Werner, 2005

Finding a good subspace (2/2)

Second idea: Look at the symmetries of the constellation

Define codewords from cosets of a subgroup of the constellation group

Dimension of code = number of cosets of the subgroup

Ínría_

²³figure of the 24-cell by UtilisateurTheon, CC-BY-SA-4.0, Commons

Performances of the 2T-qutrit against loss

For small loss strengths γ , 2*T*-qutrit performs better than cat qutrits

Entanglement infidelity (1 - f) vs loss parameter γ

Interesting features

Logical operators

• X and
$$X_{12} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 gates implemented with Gaussian unitaries

Follow-up work

Quantum spherical codes²⁵

 24 figure of the 24-cell by UtilisateurTheon, CC-BY-SA-4.0, Commons 25 Jain & Barg & Albert, 2023

Easily implementable gates

Question

Can we find codes with specific gates implemented as passive Gaussian unitaries?

 $\underbrace{\mathsf{Usual}\ \mathsf{approach}:\ \mathsf{First}\ \mathsf{find}\ \mathsf{good}\ \mathsf{QEC}\ \mathsf{code},\ \mathsf{then}\ \mathsf{look}\ \mathsf{at}\ \mathsf{gates}\ \mathsf{that}\ \mathsf{can}\ \mathsf{be}\ \mathsf{easily\ \mathsf{implemented}}}$

Our approach: Choose easily-implementable gates first²⁶

Ínaía -

²⁶Gross, 2021

Main contribution

Two-mode bosonic qubits:

The Clifford qubit

$$\blacktriangleright H = \frac{1}{\sqrt{2}} \begin{pmatrix} \eta & \eta \\ -\eta^{-1} & \eta^{-1} \end{pmatrix}, \quad S = \begin{pmatrix} \eta & 0 \\ 0 & \eta^{-1} \end{pmatrix}, \quad \eta = e^{i\frac{\pi}{4}}$$

• $G = \langle H, S \rangle$, subgroup of SU(2) of 48 elements

Gates

- Single-qubit Clifford operators implemented with Gaussian unitaries
- ► C-Z gate : $e^{\frac{i\pi}{4}(\hat{n}_1 \hat{n}_2 1)(\hat{n}_3 \hat{n}_4 1)} \rightarrow \text{multi-qubit Clifford group}$
- T gate : $e^{\frac{i\pi}{16}(\hat{n}_1 \hat{n}_2 1)^2} \rightarrow \text{universal gate set}$
- $\Rightarrow\,$ Properties similar to GKP, but with much smaller constellation

Conclusion

Summary

- Method to design QEC codes that admit a specific group of easily-implementable logical gates
- Universal gate set for Clifford code, with Gaussian unitaries and CROTs

Open questions

- State preparation?
- Error-correcting performance?
- Explicit recovery procedure?
- Experimentally-relevant examples?

Ínnía

Summary of contributions and open questions

CV QKD

 Explicit analytical bound on the asymptotic secret key rate of CVQKD protocols

 \Rightarrow Finite-size regime for general attacks?

QEC

- Definition of a new two-mode code: the 2T-qutrit
- Method to design QEC codes that admit a specific group of easily-implementable logical gates
- $\Rightarrow\,$ Error-correcting properties of the general family of codes introduced?