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Quantum Information

1st and 2nd quantum revolutions

» 1st revolution: lasers, transistors

» 2nd revolution: control of individual particles

Quantum Communication
» Communication whose security is guaranteed by quantum physics

» Quantum key distribution for setting with 2 protagonists

Quantum Computing

» Perform computations by processing quantum information

» Deal with errors = quantum error correction
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» Communication whose security is guaranteed by quantum physics
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The key distribution problem

A secret shared key can be used to securely encrypt communications... but how
to agree on a key?

Authenticated classical channel
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Quantum key distribution (QKD)

Idea: Key exchange protocol with security guaranteed by quantum physics!

Unsecure quantum channel

Authenticated classical channel

!Bennett & Brassard 1984, Ekert 1991
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QKD Protocol

Quantum transmission phase

» Alice: random variable o
> She sends a quantum state |¢(ax)) to Bob

» Bob's measure — S

Classical post-processing

» Obtain a shared secret key from the correlated strings (a1, a2, a3, ...) and

(/817/327/337 i )

Security proofs

» Bound Eve's information using level of correlation of strings

» Compute length of secret key that can be distilled
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QKD with discrete or continuous variables

Discrete-variable QKD?2 Continuous-variable (CV) QKD*
> o, Bke{o,...,d} > oy, BkeC
> Easy proofs® » Harder proofs
States in H = Span({|0), |1)}) H = Span({|n),n € N})
> Requires expensive single-photon » Uses standard telecom equipment
detectors = Reduced gap between theory
and experiments

Our goal: Security of realistic CV QKD protocols

2Bennett & Brassard 1984, Ekert 1991 -
3Shor & Preskill 2000 Crezia—~
4Grosshans & Grangier 2002
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Quantum Information

Quantum Computing

» Perform computations by processing quantum information

» Deal with errors = quantum error correction
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Quantum error correction

Why error correction?
Gate fidelity of 99.9% = ~ 1000 gates possible # 102 gates needed®
» Key idea: introduce redundancy

» Encode information into higher-dimensional space
= Quantum error correcting codes®

» Corrected memory not enough, also want gates
= Fault-tolerant quantum computing’

Beverland et al. 2022 .
8Shor 1995 Cezia—
”Aharonov & Ben-Or 1996
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Discrete and continuous classical error correction (EC)

Discrete EC Continuous EC

Encode strings of bits into continuous
variables, e.g. phase and amplitude of

»> Encode logical bit into IS
electric signal

physical bits

» Example: repetition code

0, =000, 1,=111

» Information recovered by
majority vote — corrects a
single bit flip
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Discrete and continuous quantum error correction (QEC)

Discrete QEC

Logical qubit encoded into physical
qubits®, e.g.,

0), =10)[0)[0) [1), =[1)[1)[1)

S
(=
e ) = ()
X
S)

Logical qubit

8Shor 1995, Steane 1996, Calderbank & Shor 1996

Continuous QEC

Logical qubit encoded into bosonic
mode(s) = oscillator(s)®

-
|

Oscillator Logical qubit

9Cochrane et al. 1999, Gottesman & Kitaev & Preskill 2001
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Multi-mode encodings

» Concatenation of discrete and continuous encodings

Oscillator

Oscillator

—)

QD —
=

Logical qubit

» Better performances expected from multi-mode codes

Oscillator

Oscillator

Our goal: Initiate study

@ Logical qubit

-l
l

of two-mode codes
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Outline

1. Continuous-variable quantum key distribution

» Explicit analytical bound on Eve's information, in CV QKD protocols,
using arbitrary state modulation'®

2. Multimode bosonic codes

» Construction of a new two-mode bosonic code: the 2 T-qutrit!!

» Construction of two-mode bosonic codes with easily implementable gates!?

10 Aurélie Denys, Peter Brown, Anthony Leverrier, Quantum 5, 540 (2021) -
1 Aurélie Denys, Anthony Leverrier, Quantum 7, 1032 (2023) &zz{’a,_
2 purélie Denys, Anthony Leverrier, arXiv:2306.11621 (2023)
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Continuous-variable QKD Protocol

States sent by Alice

» Idealisation of laser light

—lof? n
> Coherent state [a) =e™ 2 > %\n} aeC

» Set of coherent states — constellation of points in the complex plane

Measurement performed by Bob

2
> Double-homodyne measurement, P(B|a) = Le~l*~7| .
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Discretely-modulated CV QKD

> Optimal case: Gaussian modulation®® o ~ A(0, Va)

> Well-understood security'*

» But unrealistic = Look at discrete constellations

- analytical bounds for 2-3 states'®, numerical bounds for 4 states!®
- bigger discrete constellations?

M-PSK QAM
M-phase shift keying Quadrature amplitude
modulation
°
° [ ]
Security
° L4 proofs?
L] °
L]
BGrosshans & Grangier 2002
1 Garcia-Patrén & Cerf 2006, Navascues et. al. 2006, Leverrier 2017 -
15Zhao et al. 2009, Bradler & Weedbrock 2018 &zz&’a,.

1 Ghorai et al. 2019, Lin et. al. 2019, Upadhyaya et. al. 2021
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Bounding Eve's information

» Goal: Bound Eve's information on key, from observed correlations

» Equivalent entanglement-based protocol — shared state p?é’

» Restriction to collective attacks, asymptotic regime

» Garcia-Patrén & Cerf 2006, Navascues et al. 2006: Eve's information

bounded by
f tr(pAgéTé) R tr(pABBTB) s tr(pAB(é]LB]L + 36))
——
depends on modulation measured by Bob no access in experiment

where 3 and b are Alice’s and Bob’s annihilation operators
= Bound Z = tr(pasC), where C = 4Th' + 4b
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SKR semi-definite program

» Ghorai et al. 2019: semi-definite program (SDP) whose solution is a lower
bound on Tr(pasC)

mpin tr(pC)

trg(p) =17 — 7= B Prlag)axl
tr(pCy) = 2¢;
st tr(pC;) = 2¢,

tr (p(N @ b'b)) = ny
o0

from observed
statistics

» Numerical method explodes when number of states in constellation grows
= analytical bound?

-

lrezia—
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Main result

> Sum-of-squares technique: exhibit K s.t. KKt = C — E and Tr(pE) is
easily bounded

KK' =0 = tr(pC) > tr(pE)
» Difficult technical part: find K leading to tight bound
K=2z(A- XPT) + %BT with x, z € C and operator P optimised

» Explicit analytical bound

1
2
tT(pC) > 2@— 2 <<@_ @\~ Depends on
I / the modulation
| I

Estimated Average photon
experimentally number
» Recover known values for 4-PSK and Gaussian modulation P

» Can study big discrete constellations
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Quadrature amplitude modulations

64-QAM already gives performances close to that of Gaussian modulation

— 16-QAM e o o o
D 64—QAM ® [ ]
1072F
— 256-QAM . N
— 1024-QAM
[ ] [ ] ° [ ]
—— Gaussian

. ececccoe
1073 eeecccee
eeccccoe

secret key rate

0 10 20 30 40
variance (V)

—_
|
IS

Parameters: distance = 50 km, excess noise £ = 0.02, binomial distribution
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Conclusion

Main result

» Analytical bound on the secret key rate for CV QKD protocols with an
arbitrary constellation of states
= 64 coherent states enough to get good performances

Follow-up works

» Experimental realisations!’

» Optimisation of constellations®®

Open question
Composable security against general attacks, in finite-size regime

"Roumestan et al. 2022, Pan et al. 2022, Tian et al. 2023 &zz&'a,_
B Almeida et al. 2021
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Multimode bosonic codes J
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Bosonic quantum error correction

Single-mode codes
Examples: cat'® and GKP?® codes

Im

Im
eoeo0
(XL
® 000 c
10) ~ 3 |®) ® o006 =31®

1)~ 2 |®) eKE 1) =S4l

Multimode codes
Example: multi-mode GKP

Cohrane et al. 1999, Leghtas et al. 2013, Ofek et al. 2016 &zub,-
D Gottesman & Kitaev & Preskill 2021, Sivak et al. 2022
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Noise in bosonic systems
N:pHZCkpCE with ZC;C;(:I
k k
Loss Dephasing

* A

Re Re

& PR
1 T\ sk A/2 D, — 1| o o= 27 gk
L= —— (21— 1- el
x \/ﬂ(l—v) a(l-1) k! .

lrezia—
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Figure of merit: the entanglement fidelity

|P)ap < ( . . h Pap
Encoding Noise Recovery
& N R
N J

F(RoNo&) = (¢|(]a® (RoN o &))(|9) () |¢)

PAB

with |¢) maximally entangled state

» Quantifies how close a state is from the original state after performing a
recovery operation

» Find good code = find £ such that fidelity is large (for optimal R)

-

lrezia—
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Defining a code

Two steps

» Choice of constellation of 2-mode coherent states

» Choice of subspace of small dimension within constellation span

Constellation

» GKP codes — additive group
Cat codes — multiplicative group

» Look at subgroups of units of quaternions

» Our choice: 24 coherent states |ag) |Be) s.t.
g +jBe €2T

» Corresponds to vertices of the 24-cell

Projection of 24-cell?!

2Robert Webb's Stella software, CC-BY-SA-3.0
26/35
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Finding a good subspace (1/2)

First idea: maximise entanglement fidelity for loss to find qubit within
24-dimensional space

> lterative optimisation method? (via SDPs)

Start with the initial encoding

Optimisation of the recovery

I Optimisation of the encoding |

Outputs best encoding and
channel fidelity found

» Work in the basis given by the 24 coherent states = avoid need for
truncations

» Did not work well to find an explicit code in practice .

22Reimpell & Werner, 2005
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Finding a good subspace (2/2)

Second idea: Look at the symmetries of the constellation

Im
)~ 3 |9)
1)~ 3| .
L]
neze 2)~ 219
1 ~Z1®
8-legged cat qubit 9—Ieggec_i cat 2T-qutrit?
qutrit

» Define codewords from cosets of a subgroup of the constellation group

» Dimension of code = number of cosets of the subgroup

-

lrezia—

Bfigure of the 24-cell by UtilisateurTheon, CC-BY-SA-4.0, Commons
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Performances of the 2T-qutrit against loss

For small loss strengths ~y, 2 T-qutrit performs better than cat qutrits

107! 4 2T-qutrit

qutrit in 3-psk
cat-qutrit in 6-psk
cat-qutrit in 9-psk

FHit

,_.

15)
N
L

-
o
1
IS
L

entanglement infidelity
=
o
&

10—5 4

1073 102 1071

Entanglement infidelity (1 — f) vs loss parameter 7
&z/aa,-
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Interesting features

Logical operators

1 0 O
» Xand Xio= |0 0 1| gates implemented with Gaussian unitaries
0 1 0
9-legged cat qutrit 2T-qutrit?*

Follow-up work

> Quantum spherical codes®

Zfigure of the 24-cell by UtilisateurTheon, CC-BY-SA-4.0, Commons &z/a’a,-
% Jain & Barg & Albert, 2023
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Easily implementable gates

Question
Can we find codes with specific gates implemented as passive Gaussian
unitaries?

Usual approach: First find good QEC code, then look at gates that can be
easily implemented

Our approach: Choose easily-implementable gates first?®

B Gross, 2021
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Main contribution

group of logical ::
operators G

QEC code s.t. the
physical space # | E=) Main lemma |=) logical operators in G
are implemented via p

Easily implementable
unitary representation l:>
p:G—-UH)

Two-mode bosonic qubits:

» H: 2 oscillators

> (29 lanan) o I winn (51) = (2 7) (%)

> G C U(2), e.g. single Pauli group, single Clifford group
> |¢>L = dec; Agp(g) o, Br) = ZgEG g |og, Be) P
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The Clifford qubit

_ 1 _(m 0 _ iz
(1), 53 ) e
> G=(H,S), subgroup of SU(2) of 48 elements
Gates

» Single-qubit CIifFord operators implemented with Gaussian unitaries
> C-Z gate : e @ (M= DAs=h—1) _, myiti-qubit Clifford group
6

» T gate : e®(m=2=D" _, yniversal gate set

= Properties similar to GKP, but with much smaller constellation
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Conclusion

Summary

» Method to design QEC codes that admit a specific group of
easily-implementable logical gates

» Universal gate set for Clifford code, with Gaussian unitaries and CROTs

Open questions
» State preparation?
» Error-correcting performance?
» Explicit recovery procedure?

» Experimentally-relevant examples?
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Summary of contributions and open questions

CV QKD

» Explicit analytical bound on the asymptotic secret key rate of CVQKD
protocols

= Finite-size regime for general attacks?

QEC

» Definition of a new two-mode code: the 2T-qutrit

» Method to design QEC codes that admit a specific group of
easily-implementable logical gates

= Error-correcting properties of the general family of codes introduced?

-
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